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THE NATURE OF SOUND EMISSION IN THE FORCED VIBRATIONS OF SHELLS 
IN A COMPRESSIBLE FLUID* 

M.I. GUSEIN-ZADE 

The nature of sound emission in a compressible fluid outside a sphere 

completely enclosing a vibrating shell is investigated. The possibility 

of representing the exact solution of the problem in terms of elementary 
functions is used. It follows from the formulas obtained that with 

distance from the sphere the pressure is described by functions decreasing 

by a power- or polynomial law, with oscillations, where the nature of the 

oscillations depends on the frequencyof the forced vibrations. It is 
established that the sound intensity is represented in the form of a 

polynomial with positive coefficients in the square of the reciprocal 

of the distance from the centre of the sphere. The simple representation 

for the sound intensity permitted investigation of the nature of the 

emission from a spherical surface as a function of the frequency and the 

wave number. The near field is investigated and the influence of the 

compressible fluid on it is clarified. Simple formulas are obtained 

for the pressure in the far field. 

The problem of forced vibrations of a compressible fluid outside a spherical surface has 

been examined repeatedly /l-3/. Nevertheless, it is interesting to examine certain questions 

that are important to the investigation of the nature of sound emission from a surface. In 

particular, it is clarified that the widespread assumption about the exponential damping of 

pressure in a fluid during vibrations of a shell therein /4-l/* (*See also Vasil'ev D.G. and 

Simonov I.V. Asymptotic estimates of the complex frequencies of vibrations of a shell in a 

fluid. Preprint No.186, Inst. Probl. Mekhan., Akad. Nauk, SSSR, Moscow, 1981.) is not correct. 

We investigate the forced vibrations of a compressible fluid outside a sphere S of radius 

R in which a vibrating shell subjected to a surface load that varies with time according to 

the harmonic law ebiof is completely enclosed. In the case of a spherical shell the sphere 

s coincides with the shell. In the case of an arbitrary shell, this sphere is in the closest 

proximity to the shell (and can coincide with it at individual points). 

The fluid vibrations outside the shell are governed completely by its normal displacements 

which can be found by solving the problem of the combined vibrations of theshellandthe fluid. 

For a shell of complex shape this is by no means a simple problem. In the case of a spherical 

shell the method of separation of variables enables a solution to be obtained in the form of 

an expansionin spherical functions /8/. However, there is no need here to examine the 

complete solution of the problem of shell vibrations in a fluid. 

In a spherical coordinate system F, 0, rg, the fluid vibrations outside a sphere S are 

determined by the displacement potential @(i,B,cp1 (the time coordinate is omitted throughout), 

which satisfies the Helmholtz equation 

AI,, (r.0, C() +- @ID (',O,CF) = 0, iEa = CO+2 

(10 is the frequency of vibration, and a is the speed of sound in the fluid) under the 

condition that for r: = R(R is the radius of the sphere), the derivative of @(P,~,IF) with 

respect to F equals the normal displacements on the sphere S while the Sommerfeld radiation 
condition is satisfied at infinity. 

Separation of variables enables the solution of this problem to be represented as an 

expansion in spherical functions. We investigate the pressure field in the fluid that 

corresponds to one term in the expansion. Such an investigation is important in problems of 

sound emission in connection with resonance phenomena that manifest themselves as a sudden 

growth of the displacements and pressures at the so-called resonance frequencies. The 

resonating harmonic yields the fundamental contribution to the magnitudes of the displacement 

and pressure at such frequencies. 

The pressure in a fluid, that corresponds to a specific term in the expansion in spherica 

harmonics, is represented in the form 
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The quantity ~~(11, equal to the maximum value of the pressure on the sphere S, depends 
on parameters characterizing the shell and the fluid. The resonance properties of the shell 
vibrations in the fluid are reflected by its values. The quantity P,,,, (COS 01 cos ?UQ! yields the 
angular pressure distribution. The dependence of p nni(r.8,q) on the dimensionless distance r 
is defined by the functions '4Yn(k,n). 

The magnitude of the sound intensity 

I = j p / ‘/(“pa) 

(P is the fluid density, and p is the pressure) is of great value for the sound pressure 
field characteristics. 

The sound intensity equals the energy flux transferred by a wave through unit area 
perpendicular to the wave propagation direction. We obtain the following expression for the 
sound intensity corresponding tothe pressure field (1): 

The quantity l~~(~}lz/(2Pu) determines the maximum value of the sound intensity on the 
sphere S while the quantity I P,,,(ros~lrosm~~z is its anagular distribution. 

The functions ?u, (k,r),@,,(k,r)= lY’,(k.r)[? characterizing the dependences of the pressure 
and sound intensity in the fluid on I‘, are defined completely just by the values of the 
parameters k and n. This permits investigation of the nature of sound pressure emission from 
the sphere S without determining the value of pn(l!,whose value could be found only by the 
complete solution of the problem of the combined vibrations of the shell and fluid. 

Let us transform Yy, (k,r),a,,(k,r,I by using expressions for the Hankel function of half- 
integer order in terms of elementary functions. 

It should be noted that there is a representation of the solution of the problem under 
consideration in terms of elementary functions /l, 2/. The results of this paper could also 
be obtained from relationships presented in /l, 21 without using Hankel functions. 

We have 

Re Y,(k, r) = .&) + [En (k, r) cos k (r - 1) f G,, (k, r) sink (1. - 111 
n 

Im W, (k, r) = ++Gn(k, ) r cosk(r-l)fEn(k,r)sink(r--l)] 
n 

(3) 

(Dn (k, r) = * I F (kr) 
F,(k)-7 ¶ 

J?, (k r) = Q:f) (W Q:’ (k) -t- Qf:’ (kr) @ff (k) 

c, (k, r) = @;' (kr) Q$’ (k) - Qf’ (kr) Q;’ (k) 

F n (kr) = [Qc’ (kr)]a + [Qt’ (kr)]a 

[n/z1 

Qp (4 = r, (-1p (n + Zv)! 

v=. (2X9! (n- 2v)! (2z)D 

[(n-n/z1 
Q(l) (r) = 

c 
(-1)~(,+2v+ 1)! 

ii "V-l 
Y--o 

(Zvi, l)! (n -2V - l)! (22)_ 

It is seen that R~Y~(k,r!,ImY',(k,r) are the sum of products of polynomials of degree 
n+f in i/r and cosk(r-I) and sinkir-1). Therefore, the functions Re Y, (k. r), ImY, (k, r) that 
characterize the pressure change in r, decreases withrwiththeoscillations: The 
the oscillations depends on the dimensionless frequency k. 

It is simplest to establish the nature of the sound emission near the sphere 
basis of a study of the dependence of the sound intensity I(",*) on r, k,n, which is 
by the function CD, (k,r). 

nature of 

on the 
defined 

Let us clarify the properties of the polynomial F,(kr) in terms of which the 
(pn (k, r) is expressed. We set 

function 

Exact formulas are obtained forthe coefficients @("' . We note that in the numerical 
determination of these coefficients by squarinq and add&g the polynomials Q$'(+)(i= 1,2) in 
terms of which F,(r) are expressed, a loss in accuracy occurs for compartively moderate n. 
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It is found that 

By’ = ?Z (9 - 1’) (II’ - 2’) . . . (2 - (j - 1)‘) (e _t j) (J > 2) 

It is hence seen that all ar)>O. It can be seen that their magnitude increases abruptly 
as the power 119 increases. 

We note that the function QD,(k,r) and the sound intensity I(“,“‘) decrease monotonically 
as r increases. We investigate the behaviour of UJ,, (k,r) near the sphere S. From a comparison 
of the coefficients in F,(kr~ for different powers of llr2 with the free term one, we obtain 

Jli> 8" = * or k = ‘;/a0 (1 < j < n). These equations define a series of curves I', in the n,k plane 
tb whose points the'values of n,k correspond for which the coefficient of f/r"' iscommensurate 
with unity. It is seen from Fig.1, where the curves I', (j = 5; 10; 15; ?*I) and rrr (j = n) are 
represented, that these curves fill a certain domain G of the tz,k plane fairly compactly, 
where the curves rj depart fan-like from the curve f,. It is characteristic for the curves I', 
that as n increases they all approximate to straight lines quite rapidly. This follows from 
the face that fox large n the equations of P, can be represented with O(n-z) accuracy in the 

For values of n, I; from the domain G, the contributions of the separate components to 
the quantity r,,(hr) are of the same order for r slightly different from unity. 

For the domain G, of values of a,k located below the domain G, the main contribution to 
the quantity F,(kr) for r close to one, is made by the term with the highest power of ll?, i.e., 
the term ,(;)/(~""r?"). 

For the domain Gz of values of ~,fi located above the domain G, the quantity F,,(kr) is 
determined by the free term one for r close to unity. 

Therefore, in the n,I: plane there are three domains with a different nature in the change 
in sound intensity near the sphere. In the domain G, the dependence of the sound intensity 
around the sphere on r is close to l:?"'", i.e., is approximately the same as in the case of 
an incompressible fluid. For these values of (1, k the influence of the fluid compressibility 
near the sphere turns out to be unimportant. 

In the domain G, the dependence of the sound intensity I("$"') around the sphere on r is 
close to t/r:. For these values of II. 2E, the influence of compressibility is felt in immediate 
proximity to the sphere S and emission from the sphere penetrates most remotely into the depths 
of the fluid. 

Fig.1 Fig.2 
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For values of ?I, k fromthedomain G the dependence on r near the sphere S is determined 

by a polynomial of degree n+ 1 in llr2, all of whose terms are of approximately the same order. 

As the distance from the sphere S increases for low and medium frequencies (the domains G 

and G,) a gradual increase occurs in the role of the terms with lower powers of l/r2 in the 

expression for the sound intensity I("*"'). The dependence of the sound intensity on r becomes 

close to 1.r' at a significant distance from the sphere S. 

We obtain simplified formulas for the pressure and sound intensity in the far field for 

large values of r in the case of low and medium frequencies (the domains G, and G) and for any 

r for high frequencies (the domain GJ. We have 

to 2 = Q@) (k)/Q"' (k) 
D 11 n 

We note that ,+,(I) in (4) and (5) is complex in value. Moreover, the factors i/l/Fn(k) and 

i/F,, (k), whose values impinge substantially on the magnitudes of the sound pressure and 

intensity determined by the simplified formulas, enter into (4) and (5). 

For each n the values of i/F,(k) increase from zero to one as li increases (Fig.2). As 

n increases, the frequency range increases for which l/F,, (k) takes quite small values. The 

sound pressure and intensity in the far field are insignificant at these frequencies. Assuming 

the dependences of i/F,,(k) on k, the frequencies can be determined for each n for which the 

emission is penetrating in nature. For these frequencies the values of I:),, (i;) do not differ 

radically from unity. 

In conclusion, we note that representations in elementary functions are obtained for the 

sound pressure and intensity which enable them to be determined in the whole mass of fluid 

outside the spherical surface depending on their amplitude values on the sphere. Three domains 

of values are established for the parameters n,k with a different near-field nature. It is 

found that the sound intensity near the sphere varies as li'rz"+2 for low frequencies, as llr2 

for high frequencies, and according to a polynomial law of degree nf 1 in l/r2 for medium 

frequencies. Note that the frequency ranges depend on the value of the wave number. 
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